Hameroha.com Share Your Knowledge

Cross Product of two Vectors

Def $^{-1}$: Let $\mathrm{A}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ and $\mathrm{B}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)$ be two vectors. The cross (Vector) product of A and B, written $A \times B$ is defined by:

$$
\mathrm{A} \times \mathrm{B}=\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right) \vec{i}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}\right) \vec{j}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right) \vec{k}
$$

$A \times B$ is read as " A cross B ".

Now let us see a simple method how to recall the formula for the cross product of A and B
i) The first method.

$$
\mathrm{A} \times \mathrm{B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right|
$$

ii) The second method.

Example: Let $\mathrm{A}=(5,-1,0)$ and $\mathrm{B}=(0,2,-2)$. Find $\mathrm{A} \times \mathrm{B}$ and $\mathrm{B} \times \mathrm{A}$.

Solution:

$$
\begin{aligned}
& \mathrm{A} \times \mathrm{B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
5 & -1 & 0 \\
0 & 2 & -2
\end{array}\right| \\
& \quad=2 \vec{i}+10 \vec{j}+10 \vec{k}
\end{aligned}
$$

Therefore $\mathrm{A} \times \mathrm{B}=2 \vec{i}+10 \vec{j}+10 \vec{k}$.

Hameroha.com Share Your Knowledge

$\mathrm{A} \times \mathrm{B}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 0 & 2 & -2 \\ 5 & -1 & 0\end{array}\right|$ $=-2 \vec{i}-10 \vec{j}-10 \vec{k}$

Therefore $\mathrm{A} \times \mathrm{B}=-2 \vec{i}-10 \vec{j}-10 \vec{k}$.

Remark: $\vec{i} \times \vec{j}=\vec{k}, \vec{j} \times \vec{k}=\vec{i}$ and $\vec{k} \times \vec{i}=\vec{j}$.

Properties of Cross Product

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be vectors and let m be a scalar. Then
i) $\mathrm{A} \times \mathrm{B}=-(\mathrm{B} \times \mathrm{A})$
ii) $\mathrm{A} \times \mathrm{A}=\overrightarrow{0}$
iii) $\mathrm{A} \times(\mathrm{B}+\mathrm{C})=(\mathrm{A} \times \mathrm{B})+(\mathrm{A} \times \mathrm{C})$
and $(\mathrm{A}+\mathrm{B}) \times \mathrm{C})=(\mathrm{A} \times \mathrm{C})+(\mathrm{B} \times \mathrm{C})$
iv) $(\mathrm{mA}) \times \mathrm{B}=\mathrm{m}(\mathrm{A} \times \mathrm{B})=\mathrm{A} \times(\mathrm{mB})$.

Remark: Cross Product is not associative.
Example: $\vec{i} \times(\vec{k} \times \vec{k})=\overrightarrow{0}$ while, $(\vec{i} \times \vec{k}) \times \vec{k}=-\vec{j} \times \vec{k}=-\vec{i}$.

Theorem: Let A and B be two non-zero vectors.
a) $A \cdot(A \times B)=0$ and $B \cdot(A \times B)=0$

Consequently; if $A \times B \neq \overrightarrow{0}$, then $A \times B$ is orthogonal to both A and B.
b) If θ is the angle between A and $\mathrm{B}(0 \leq \theta \leq \pi)$, then

$$
|A \times B|=|A||B| \sin \theta
$$

Proof: i) $A \cdot(A \times B)=\mathrm{a}_{1}\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right)+\mathrm{a}_{2}\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}\right)+\mathrm{a}_{3}\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)$

Applied Mathematics I | Chapter 1 | Vectors, Lines and Planes | Vectors

Hameroha.com

 share Your Knowledge

 share Your Knowledge}

$$
\begin{aligned}
& =a_{1} a_{2} b_{3}-a_{1} a_{3} b_{2}+a_{2} a_{3} b_{1}-a_{1} a_{2} b_{3}+a_{1} a_{3} b_{2}-a_{2} a_{3} b_{1} \\
& =\left(a_{1} a_{2} b_{3}-a_{1} a_{2} b_{3}\right)+\left(a_{1} a_{3} b_{2}-a_{1} a_{3} b_{2}\right)+\left(a_{2} a_{3} b_{1}+-a_{2} a_{3} b_{1}\right) \\
& =0 \\
B \cdot(A \times B) & =b_{1}\left(a_{2} b_{3}-b_{2} a_{3}\right)+b_{2}\left(a_{3} b_{1}-a_{1} b_{3}\right)+b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =a_{2} b_{1} b_{3}-a_{3} b_{1} b_{2}+a_{3} b_{1} b_{2}-a_{1} b_{2} b_{3}+a_{1} b_{2} b_{3}-a_{2} b_{1} b_{3} \\
& =\left(a_{2} b_{1} b_{3}-a_{2} b_{1} b_{3}\right)+\left(a_{3} b_{1} b_{2}-a_{3} b_{1} b_{2}\right)+\left(a_{1} b_{2} b_{3}-a_{1} b_{2} b_{3}\right) \\
& =0
\end{aligned}
$$

ii) $|A \times B|^{2}=\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right)^{2}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}\right)^{2}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)^{2}$

$$
\begin{aligned}
& =\left(a_{2}^{2} b_{3}^{2}-2 a_{2} a_{3} b_{2} b_{3}+b_{2}^{2} a_{3}^{2}\right)+\left(a_{1}{ }^{2} b_{3}^{2}-2 a_{1} a_{3} b_{1} b_{3}+b_{1}{ }^{2} a_{3}^{2}\right) \\
& +\left(a_{1}{ }^{2} b_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}+a_{2}{ }^{2} b_{1}^{2}\right) \\
= & a_{1}^{2}\left(b_{2}^{2}+b_{3}^{2}\right)+a_{2}^{2}\left(b_{1}^{2}+b_{3}^{2}\right)+a_{3}^{2}\left(b_{1}^{2}+b_{2}^{2}\right) \\
& -\left(2 a_{2} a_{3} b_{2} b_{3}+2 a_{1} a_{3} b_{1} b_{3}+2 a_{1} a_{2} b_{1} b_{2}\right) \\
= & \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
= & |A|^{2}|B|^{2}-(|A||B| \cos \theta)^{2} \\
= & |A|^{2}|B|^{2}-|A|^{2}|B|^{2} \cos { }^{2} \theta \\
= & |A|^{2}|B|^{2}\left(1-\cos { }^{2} \theta\right) \\
= & |A|^{2}|B|^{2} \sin { }^{2} \theta
\end{aligned}
$$

Therefore $|A \times B|=|A||B| \sin \theta$.
Corollary: Two non-zero vectors A and B are parallel if and only if $A \times B=\overrightarrow{0}$.
Proof: $A \times B=\overrightarrow{0} \Leftrightarrow|A \times B|=0$

$$
\begin{aligned}
& \Leftrightarrow|A||B| \sin \theta \\
& \Leftrightarrow \sin \theta=0 \\
& \Leftrightarrow \theta=0 \text { or } \theta=\pi . \\
& \Leftrightarrow \mathrm{A} \| \mathrm{B} .
\end{aligned}
$$

Therefore Two non-zero vectors A and B are parallel if and only if $A \times B=\overrightarrow{0}$.
Example: Let A $(3,2,-2)$ and $B(0,3,7)$.
i) Determine whether A and B are parallel or orthogonal or neither.

Applied Mathematics I | Chapter 1 | Vectors, Lines and Planes | Vectors

Hameroha.com Share Your Knowledge

ii) Find a vector orthogonal to both A and B .

Solution: i) $A \cdot B=(3 \times 0)+(2 \times 3)+(-2 \times 7)=-2,|A|=\sqrt{17}$ and $|B|=2 \sqrt{14}$.
Hence neither $A \cdot B \neq 0$ nor $|A \cdot B| \neq|A||B|$.
Therefore A and B are neither parallel nor orthogonal.
Remark: $|A \times B|$ is the area of a parallelogram with adjacent sides A and B .

Triple Product

There are two types of triple products.
i) Scalar triple product

For any three vectors A, B and C, $A \cdot(B \times C)$ is called the triple (box or mixed triple) product of A, B and C .
Example: Show that for any three vectors A, B and C

$$
A \cdot(B \times C)=(A \times B) \cdot C
$$

Solution: $A \cdot(B \times C)=|A||B \times C| \cos \alpha$, where α is the angle between A and $B \times C$.

$$
=|A||B||C| \cos \alpha \sin \beta \text {, where } \beta \text { is the angle between } \mathrm{B} \text { and } C
$$

and $(A \times B) \cdot C=|A||B||C| \cos \psi \sin v$, where ψ is the angle between C and

$$
A \times B \text { and } v \text { is the angle between } A \text { and } B \text {. }
$$

Now $\cos \alpha=\sin \cup$ and $\sin \beta=\cos \psi$, because co-functions of complementary angles are equal.
Therefore $A \cdot(B \times C)=(A \times B) \cdot C$.

ii) Vector Triple Product

For any three vectors A, B and C, $A \times(B \times C)$ is called the Vector triple product of A, B and C .

Example: Show that for any three vectors A, B and C

$$
A \times(B \times C) \neq(A \times B) \times C
$$

Solution: $A \times(B \times C)=|A||B \times C| \sin \alpha$, where α is the angle between A and $B \times C$.

Applied Mathematics I | Chapter 1 | Vectors, Lines and Planes | Vectors

Hameroha.com Share Your Knowledge

$=|A||B||C| \sin \alpha \sin \beta$, where β is the angle between B and C
and $(A \times B) \times C=|A||B||C| \sin \psi \sin v$, where ψ is the angle between C and $A \times B$ and v is the angle between A and B.

Now $\sin \alpha \neq \sin \cup$ and $\sin \beta \neq \sin \psi$.
Therefore $A \times(B \times C) \neq(A \times B) \times C$.

Remark: For any three vectors A, B and C

$$
A \times(B \cdot C),(A \cdot B) \times C \text { and }(A \cdot B) \cdot C
$$

are undefined operations.

Some Properties of Triple Products

For any three vectors A, B and C
i) $(A \times B) \cdot C=B \cdot(C \times A)=A \cdot(B \times C)$
ii) $A \times(B \times C)=B(A \cdot C)-C(A \cdot B)$ " bac - cab" rule.

Remark: For any three non-zero vectors A, B and $\mathrm{C} ;|A \cdot(B \times C)|$ is the volume of a parallelepiped with sides A, B and C.

