

Cross Product of two Vectors

Defⁿ: Let $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$ be two vectors. The **cross** (**Vector**) **product** of A and B, written $A \times B$ is defined by:

$$A \times B = (a_2 b_3 - b_2 a_3) \overrightarrow{i} + (a_3 b_1 - a_1 b_3) \overrightarrow{j} + (a_1 b_2 - a_2 b_1) \overline{k}$$

A × B is read as "A cross B".

Now let us see a simple method how to recall the formula for the cross product of A and B

i) The first method.

$$\mathbf{A} \times \mathbf{B} = \begin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

ii) The second method.

Example: Let A = (5, -1, 0) and B = (0, 2, -2). Find $A \times B$ and $B \times A$.

Solution:

$$A \times B = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 5 & -1 & 0 \\ 0 & 2 & -2 \end{vmatrix}$$
$$= 2 \overrightarrow{i} + 10 \overrightarrow{j} + 10 \overrightarrow{k}$$

Therefore $A \times B = 2\overrightarrow{i} + 10\overrightarrow{j} + 10\overrightarrow{k}$.

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 0 & 2 & -2 \\ 5 & -1 & 0 \end{vmatrix}$$

$$=-2\overrightarrow{i}-10\overrightarrow{j}-10\overrightarrow{k}$$

Therefore $A \times B = -2 \overrightarrow{i} - 10 \overrightarrow{j} - 10 \overrightarrow{k}$.

Remark: $\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$, $\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}$ and $\overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$.

Properties of Cross Product

Let A, B, C be vectors and let m be a scalar. Then

i)
$$A \times B = -(B \times A)$$

ii)
$$A \times A = 0$$

iii)
$$A \times (B + C) = (A \times B) + (A \times C)$$

and
$$(A + B) \times C$$
 = $(A \times C) + (B \times C)$

iv)
$$(m A) \times B = m (A \times B) = A \times (m B)$$
.

Remark: Cross Product is not associative.

Example: $\overrightarrow{i} \times (\overrightarrow{k} \times \overrightarrow{k}) = \overrightarrow{0}$ while, $(\overrightarrow{i} \times \overrightarrow{k}) \times \overrightarrow{k} = -\overrightarrow{j} \times \overrightarrow{k} = -\overrightarrow{i}$.

Theorem: Let A and B be two non-zero vectors.

a)
$$A \cdot (A \times B) = 0$$
 and $B \cdot (A \times B) = 0$

Consequently; if $A \times B \neq \overrightarrow{0}$, then $A \times B$ is orthogonal to both A and B.

b) If θ is the angle between A and B $(0 \le \theta \le \pi)$, then

$$|A \times B| = |A| |B| \sin \theta.$$

Proof: i) $A \cdot (A \times B) = a_1 (a_2 b_3 - b_2 a_3) + a_2 (a_3 b_1 - a_1 b_3) + a_3 (a_1 b_2 - a_2 b_1)$

$$= a_1a_2 b_3 - a_1a_3b_2 + a_2a_3 b_1 - a_1a_2b_3 + a_1a_3b_2 - a_2 a_3b_1$$

= $(a_1a_2 b_3 - a_1a_2b_3) + (a_1a_3b_2 - a_1a_3b_2) + (a_2a_3 b_1 + - a_2 a_3b_1)$
= 0 .

$$B \cdot (A \times B) = b_1 (a_2 b_3 - b_2 a_3) + b_2 (a_3 b_1 - a_1 b_3) + b_3 (a_1 b_2 - a_2 b_1)$$

$$= a_2 b_1 b_3 - a_3 b_1 b_2 + a_3 b_1 b_2 - a_1 b_2 b_3 + a_1 b_2 b_3 - a_2 b_1 b_3$$

$$= (a_2 b_1 b_3 - a_2 b_1 b_3) + (a_3 b_1 b_2 - a_3 b_1 b_2) + (a_1 b_2 b_3 - a_1 b_2 b_3)$$

$$= 0.$$

ii)
$$|A \times B|^2 = (a_2 b_3 - b_2 a_3)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2$$

$$= (a_2^2 b_3^2 - 2 a_2 a_3 b_2 b_3 + b_2^2 a_3^2) + (a_1^2 b_3^2 - 2 a_1 a_3 b_1 b_3 + b_1^2 a_3^2)$$

$$+ (a_1^2 b_2^2 - 2 a_1 a_2 b_1 b_2 + a_2^2 b_1^2)$$

$$= a_1^2 (b_2^2 + b_3^2) + a_2^2 (b_1^2 + b_3^2) + a_3^2 (b_1^2 + b_2^2)$$

$$- (2 a_2 a_3 b_2 b_3 + 2 a_1 a_3 b_1 b_3 + 2 a_1 a_2 b_1 b_2)$$

$$= (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2) - (a_1 b_1 + a_2 b_2 + a_3 b_3)^2$$

$$= |A|^2 |B|^2 - (|A| |B| \cos \theta)^2$$

$$= |A|^2 |B|^2 (1 - \cos^2 \theta)$$

$$= |A|^2 |B|^2 \sin^2 \theta$$

Therefore $|A \times B| = |A| |B| \sin \theta$.

Corollary: Two non-zero vectors A and B are parallel if and only if $A \times B = 0$.

Proof:
$$A \times B = \overrightarrow{0} \Leftrightarrow |A \times B| = 0$$

 $\Leftrightarrow |A| |B| \sin \theta$
 $\Leftrightarrow \sin \theta = 0$
 $\Leftrightarrow \theta = 0 \text{ or } \theta = \pi.$
 $\Leftrightarrow A \parallel B.$

Therefore Two non-zero vectors A and B are parallel if and only if $A \times B = \overrightarrow{0}$.

Example: Let A (3, 2, -2) and B (0, 3, 7).

i) Determine whether A and B are parallel or orthogonal or neither.

ii) Find a vector orthogonal to both A and B.

Solution: i)
$$A \cdot B = (3 \times 0) + (2 \times 3) + (-2 \times 7) = -2$$
, $|A| = \sqrt{17}$ and $|B| = 2\sqrt{14}$.

Hence neither
$$A \cdot B \neq 0$$
 nor $|A \cdot B| \neq |A| |B|$.

Therefore A and B are neither parallel nor orthogonal.

Remark: $|A \times B|$ is the area of a parallelogram with adjacent sides A and B.

Triple Product

There are two types of triple products.

i) Scalar triple product

For any three vectors A, B and C, $A \cdot (B \times C)$ is called the **triple** (**box** or **mixed triple**) product of A, B and C.

Example: Show that for any three vectors A, B and C

$$A \cdot (B \times C) = (A \times B) \cdot C$$

Solution: $A \cdot (B \times C) = |A| |B \times C| \cos \alpha$, where α is the angle between A and $B \times C$.

= $|A| |B| |C| \cos \alpha \sin \beta$, where β is the angle between B and C

and $(A \times B) \cdot C = |A| |B| |C| \cos \psi \sin \upsilon$, where ψ is the angle between C and

 $A \times B$ and v is the angle between A and B.

Now $\cos \alpha = \sin \upsilon$ and $\sin \beta = \cos \psi$, because co-functions of complementary angles are equal.

Therefore $A \cdot (B \times C) = (A \times B) \cdot C$.

ii) Vector Triple Product

For any three vectors A, B and C, $A \times (B \times C)$ is called the **Vector triple** product of A, B and C.

Example: Show that for any three vectors A, B and C

$$A \times (B \times C) \neq (A \times B) \times C$$

Solution: $A \times (B \times C) = |A| |B \times C| \sin \alpha$, where α is the angle between A and $B \times C$.

= $|A||B||C|\sin\alpha\sin\beta$, where β is the angle between B and C

and $(A \times B) \times C = |A| |B| |C| \sin \psi \sin \upsilon$, where ψ is the angle between C and

 $A \times B$ and v is the angle between A and B.

Now $\sin \alpha \neq \sin \upsilon$ and $\sin \beta \neq \sin \psi$.

Therefore $A \times (B \times C) \neq (A \times B) \times C$.

Remark: For any three vectors A, B and C

$$A \times (B \cdot C), (A \cdot B) \times C$$
 and $(A \cdot B) \cdot C$

are undefined operations.

Some Properties of Triple Products

For any three vectors A, B and C

i)
$$(A \times B) \cdot C = B \cdot (C \times A) = A \cdot (B \times C)$$

ii)
$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$

"bac – cab" rule.

Remark: For any three non-zero vectors A, B and C; $|A \cdot (B \times C)|$ is the **volume** of a parallelepiped with sides A, B and C.